64 research outputs found

    Spin interference in silicon one-dimensional rings

    Full text link
    We present the first findings of the spin transistor effect caused by the Rashba gate-controlled ring embedded in the p-type self-assembled silicon quantum well that is prepared on the Si (100) surface. The coherence and phase sensitivity of the spin-dependent transport of holes are studied by varying the value of the external magnetic field and the gate voltage that are perpendicular to the plane of the double-slit ring. Firstly, the quantum scatterers connected to two one-dimensional leads and the quantum point contact inserted in the one of the arms of the double-slit ring are shown to define the amplitude and the phase of the Aharonov-Bohm and the Aharonov-Casher conductance oscillations. Secondly, the amplitude and phase sensitivity of the 0.7 feature of the hole quantum conductance staircase revealed by the quantum point contact inserted are found to result from the interplay of the spontaneous spin polarization and the Rashba spin-orbit interaction.Comment: 2 pages, 2 figures, presented at the 5th International Conference on Strongly Correlated Electron Systems, SCES'05, Vienna, Austria, 26-30 July, 200

    Report on TID algorithms

    Get PDF
    This deliverable presents the TID detection algorithms as improved in response to design principles stated in T2.1 and their testing in the lab environment, verification against measurements taken during quiet and disturbed periods of time, benchmarking for their transition to operations, and final validation to the user requirements of accuracy, timeliness, and coverage.TechTIDE project, funded by the European Commission Horizon 2020 research and innovation program [AD-1], will establish a pre-operational system to demonstrate reliability of a set of TID (Travelling Ionospheric Disturbances) detection methodologies to issue warnings of the occurrence of TIDs over the region extending from Europe to South Africa. TechTIDE warning system will estimate the parameters that specify the TID characteristics and the inferred perturbation, with all additional geophysical information to the users to help them assess the risks and to develop mitigation techniques, tailored to their application. This document is TechTIDE D2.2 “Report on the TID algorithms” and it is an output of TechTIDE Task 2.2 (Development of the TID identification algorithms and products) of the WP2 (TID identification methodologies) which has the final goal to release the basic algorithms for the TID identification and to test a first version of the value-added products for implementation in the TechTIDE warning system. The document highlights four aspects of the TID algorithm release process, (1) Developmentbased on the concept, techniques, and algorithms as stated in TechTIDE D2.1, (2) Verification, an internal testing process that ensures algorithm correctness, (3) Benchmarkingneeded to prepare algorithms to transition to operations, and (4) Validation, an external process of ensuring that developed algorithms are compliant with the stated end user expectations.Postprint (published version

    Duchenne Muscular Dystrophy Animal Models

    Get PDF
    Duchenne muscular dystrophy is a complex and severe orphan disease. It develops when the organism lacks the expression of dystrophin - a large structural protein. Dystrophin is transcribed from the largest gene in the human genome. At the moment, there is no cure available. Dozens of groups all over the world search for cure. Animal models are an important component of both the fundamental research and therapy development. Many animal models reproducing the features of disease were created and actively used since the late 80’s until present. The species diversity spans from invertebrates to primates and the genetic diversity of these models spans from single mutations to full gene deletions. The models are often non-interchangeable; while one model may be used for particular drug design it may be useless for another. Here we describe existing models, discuss their advantages and disadvantages and potential applications for research and therapy development

    A method for real-time identification and tracking of traveling ionospheric disturbances using ionosonde data: first results

    Get PDF
    Traveling Ionospheric Disturbances (TIDs) are wave-like propagating irregularities that alter the electron density environment and play an important role spreading radio signals propagating through the ionosphere. A method combining spectral analysis and cross-correlation is applied to time series of ionospheric characteristics (i.e., MUF(3000)F2 or foF2) using data of the networks of ionosondes in Europe and South Africa to estimate the period, amplitude, velocity and direction of propagation of TIDs. The method is verified using synthetic data and is validated through comparison of TID detection results made with independent observational techniques. The method provides near real time capability of detection and tracking of Large-Scale TIDs (LSTIDs), usually associated with auroral activity.Postprint (published version

    Report on the design and specifications of the TID algorithms and products

    Get PDF
    EU H2020 project TechTIDE deriverable, reporting on the design of the adjustments and upgrades required in order to develop the TID identification algorithms. The added value products that will result from the detection methods will be specified and designed. Each detection method developer will design a validation methodology that will lead to the definition of the confidence metrics.TechTIDE project, funded by the European Commission Horizon 2020 research and innovation program [AD-1], will establish a pre-operational system to demonstrate reliability of a set of TID (Travelling Ionospheric Disturbances) detection methodologies to issue warnings of the occurrence of TIDs over the region extended from Europe to South Africa. TechTIDE warning system will estimate the parameters that specify the TID characteristics and the inferred perturbation, with all additional geophysical information to the users to help them assess the risks and to develop mitigation techniques, tailored to their application. This document is TechTIDE D2.1 “Report on the design and specifications of the TID algorithms and products” and it is an output of TechTIDE Task 2.1 (Specifications for the TID algorithms and the resulting products) of the WP2 (TID identification methodologies) which has the final goal to release the basic algorithms for the TID identification and the value-added products for implementation in the TechTIDE warning system. The document presents the design of adjusted and upgraded TID detection codes, the design of the value-added products, and the validation plan. The design of the adjustments and the upgrades of the different methods are based on the initial requirements gathered among potential users affected by TIDs [RD-1]. Some requirements were brought in from ESA Space Situational Awareness Space Weather (SSA SWE) [RD-2] users' requirements. This way, TID algorithms and product outputs will try to adapt to assess ESA SSA SWE Service Network prerequisites.Preprin

    Space-Borne Radio-Sounding Investigations Facilitated by the Virtual Wave Observatory (VWO)

    Get PDF
    The goal of the Virtual Wave Observatory (VWO) is to provide userfriendly access to heliophysics wave data. While the VWO initially emphasized the vast quantity of wave data obtained from passive receivers, the VWO infrastructure can also be used to access active sounder data sets. Here we use examples from some half-million Alouette-2, ISIS-1, and ISIS-2 digital topside-sounder ionograms to demonstrate the desirability of such access to the actual ionograms for investigations of both natural and sounder-stimulated plasma-wave phenomena. By this demonstration, we wish to encourage investigators to make other valuable space-borne sounder data sets accessible via the VWO

    Global monitoring of ionospheric weather by GIRO and GNSS data fusion

    Get PDF
    Prompt and accurate imaging of the ionosphere is essential to space weather services, given a broad spectrum of applications that rely on ionospherically propagating radio signals. As the 3D spatial extent of the ionosphere is vast and covered only fragmentarily, data fusion is a strong candidate for solving imaging tasks. Data fusion has been used to blend models and observations for the integrated and consistent views of geosystems. In space weather scenarios, low latency of the sensor data availability is one of the strongest requirements that limits the selection of potential datasets for fusion. Since remote plasma sensing instrumentation for ionospheric weather is complex, scarce, and prone to unavoidable data noise, conventional 3D-var assimilative schemas are not optimal. We describe a novel substantially 4D data fusion service based on near-real-time data feeds from Global Ionosphere Radio Observatory (GIRO) and Global Navigation Satellite System (GNSS) called GAMBIT (Global Assimilative Model of the Bottomside Ionosphere with Topside estimate). GAMBIT operates with a few-minute latency, and it releases, among other data products, the anomaly maps of the effective slab thickness (EST) obtained by fusing GIRO and GNSS data. The anomaly EST mapping aids understanding of the vertical plasma restructuring during disturbed conditionsPeer ReviewedPostprint (published version

    A combination of experimental and computational methods to study the reactions during a Lignin-First approach

    Get PDF
    AbstractCurrent pulping technologies only valorize the cellulosic fiber giving total yields from biomass below 50 %. Catalytic fractionation enables valorization of both cellulose, lignin, and, optionally, also the hemicellulose. The process consists of two operations occurring in one pot: (1) solvolysis to separate lignin and hemicellulose from cellulose, and (2) transition metal catalyzed reactions to depolymerize lignin and to stabilized monophenolic products. In this article, new insights into the roles of the solvolysis step as well as the operation of the transition metal catalyst are given. By separating the solvolysis and transition metal catalyzed hydrogen transfer reactions in space and time by applying a flow-through set-up, we have been able to study the solvolysis and transition metal catalyzed reactions separately. Interestingly, the solvolysis generates a high amount of monophenolic compounds by pealing off the end groups from the lignin polymer and the main role of the transition metal catalyst is to stabilize these monomers by transfer hydrogenation/hydrogenolysis reactions. The experimental data from the transition metal catalyzed transfer hydrogenation/hydrogenolysis reactions was supported by molecular dynamics simulations using ReaXFF
    • …
    corecore